About Maxon

maxon motor is the world’s leading supplier of high-precision drive systems. More than 40 years’ experience, constant innovation, top-quality products and competent customer service make maxon motor a reliable partner in the drive technology sector. We are driven by your specific requirements. The product range incorporated in the modular system is comprehensive: Brushed and Brushless DC motors with the unique ironless maxon winding Flat motors with iron cores Planetary gears, spur gears and special gears Sensors (encoders, DC tachos, resolvers) Servo amplifiers, position controllers and control electronics High-tech CIM and MIM components Customer specific drive solutions. maxon motor is a Swiss company headquartered in Sachseln (Central Switzerland) that employs more than 2000 staff worldwide. With 14 sales companies based in over 30 countries, sales partners in another 10 countries and with six production sites, maxon motor are able to provide locally-based and competent customer service. maxon motor helps provide innovative solutions at competitive prices for numerous applications in various markets, such as Medical technology, Industrial automation and robotics, Aerospace industry, Automotive industry, Communication, Consumer applications, Inspection and Instrumentation and Safety engineering. maxon motor Australia is based in Mt Kuring-Gai NSW and our staff will be happy to help you with all your DC motor and technical enquiries. Visit www.maxonmotor.com.au or call +61 2 9457 7477.

Ambulance E-bikes in a remote African village.

Nino S front cover

In first world countries we take for granted how easy a journey can be to access emergency health care. In a small town in Mozambique, Health Organisation SolidarMed has teamed up with maxon motor to retrofit two Ambulance bikes with maxon’s BIKEDRIVE.

Across dirt roads in a remote town in Northern Africa, pushbikes with special trailers are what is used to transport pregnant women and other patients to the closest health centre. Ambassador for SolidarMed and Olympic Mountain Bike Champion, Nino Schurter, visited the town and tested the bike trailers “I’m an elite athlete, but even I would find it hard to pull the heavy trailer with the patient on it” he said. Maxon motor is supporting SolidarMeds E-bike Ambulance project with two BIKEDRIVE retrofitting kits. The kits are fitted to prototypes that will be tested & developed over two years, and evaluated at the end of 2019. If the project is a success, SolidarMed is looking to expand the E-bike Ambulance project across the entire region.

For further information on maxon’s BIKEDRIVE visit www.maxonbikedrive.com/ or call +61 2 9457 7477.

For more information on SolidarMed’s project in Mozambique, please visit www.solidarmed.ch/en/countries/mocambique

 

 

Unlocking the secrets of the spine

Pleurobot landscape

Research and development into the spinal cord has taken an unconventional approach at The Swiss Institute of Technology.

Our brain is the central processing unit of our motor skills and functions. But it does not control our physical movements alone. The contribution that our spinal cord makes to our physical actions has driven two investigative questions from a team at the Swiss Federal Institute of Technology in Lausanne – How do these motor circuits work and what is the underlying control mechanisms for the movement of vertebrates? To better understand the secrets of the spinal cord, they have a dedicated Lab, called the Biorobotics Laboratory or Biorob for short. Here, they build robots to better understand mobility in living beings, drawing inspiration from many different animals where motor control happens mostly in the spinal cord. From this they built a robot called the Pleurobot, based on a Salamander. Powered by 27 maxon brushless frameless DC motors the robot can move on land and in water seamlessly mimicking the actions of the amphibian. Primarily its use is to assist with understanding how the nervous system in a spinal chord operates and will assist research in the neurosciences and biomechanical fields contributing to neuroprosthetics and paraplegia therapies.

For further information contact maxon motor Australia Tel. +61 2 9457 7477 or visit the Swiss Federal Institute of Technology’s BioRob Page – Pleurobot.

 

Nature inspiring robotics.

For many, many years nature has inspired engineers in evolving and enhancing technology to create powerful and proficient robots. Here are some examples of current creative developments.

Birds, Dogs, Snakes and Elephants are just some of the animals inspiring mechatronic engineers to design state of the art robots. Here maxon takes a closer look.

The bionic bird A French company has developed a bionic bird toy that can be controlled with a smartphone. A lightweight 9 grams, the bird can achieve speeds of up to 20 km/h and has a range covering more than 100 metres. The bird presents an alternative to propeller drones.

bionic bird

ANYmal Engineers at ETH Zurich developed a four-legged robot that was made for very harsh conditions and can move autonomously. Since its inception in 2009, ANYmal has evolved into machine that can conquer inclines, run, jump and press elevator buttons. Using laser sensors and cameras, the robot continuously creates a map of its terrain, knows where it is and navigates through the changing landscape. Weighing around 30 kg it can carry a payload up to 10kg and run for 2 hours on a fully charged battery. The future use for the ANYmal is expected for inspections, rescue operations or the entertainment industry.

anymal

The underwater snake A modular underwater robot snake has been developed for use in inspections, maintenance and repair work reaching distances and places that conventional underwater robots are unable to reach. The robot is flexible and has moving connecting parts with the option of mounting tools. Inside the connecting modules are maxon brushless DC motors with customised gearheads. The underwater robot has been in constant development for 10 years with the current model reliant on a cable. Future versions include keeping the robot on the bottom of the ocean indefinitely at a docking station from where it can launch into action when needed.

underwater snake

SnakeBot This robot was named so because it moves like a snake. With a diameter of 6cm it can fit into narrow spaces making it suitable for inspection in unstable environments such as after earthquakes. With independent modules the SnakeBot can also climb up plant legs and posts. There are approx.. 20 maxon EC20 flat brushless motors in the snake, selected for both their high torque and ability to withstand short periods of overload.

snakebot

BionicMotionRobot This robot is modelled on an octopus’s tentacles and elephant’s trunk. With skin made of innovative fibre technology this robot offers flexible movement that can bend in three different directions at the same time. The robot is pneumatic and lightweight with 12 degrees of freedom and can carry up to three kilos of payload.

octophant

For further information on any of these examples please contact maxon motor Australia tel. +61 2 9457 7477.

 

Design considerations for an exoskeleton for children.

Exoskeleton for children maxon DC motors

 

 

Developing Exoskeletons for children present their own engineering challenges simply because children are still growing.

Exoskeletons were largely developed for people that have sustained paralysis or suffer muscular dystrophy. For adults who have stopped growing there is no risk of outgrowing the exoskeleton. However for children their growth and ability present a multitude of challenges for design engineers. An exoskeleton that fits a six-year old perfectly may be much too small by the time the child turns seven. For a child with spinal muscular atrophy an exoskeleton is designed to recognise users are not completely paralysed but are able to move their legs to a certain extent. Sensors within the frame detect weak leg movements and respond immediately to provide support. As a result, the child is able control the exoskeleton directly with the legs.

Spanish company, Marsi Bionics, manufactures exoskeletons mainly for adults but have developed two exoskeletons for children, the Atlas 2020 and Atlas 2030. Weighing approximately 14 kgs it is made for children from 3 years up who have a neuromuscular disease. The exoskeleton can be adapted to various leg lengths and hip widths, so that it also fits teenagers up to about 14 years of age. The “Atlas 2030 is an upgrade of Atlas 2020”, explains Elena García, creator and co-founder of Marsi Bionics. “The main difference is that Atlas 2020 is intended for use in hospitals for gait training and rehabilitation, while Atlas 2030 is designed for use in private homes as an integral part of the patient’s everyday life. Both devices are ready for industrial production and until then, Atlas 2020 will continue to be used in hospitals for clinical research.”

maxon motor have five drive systems in each leg of the children’s exoskeleton. Brushless flat EC45 motors deliver very high torque in a compact design, coupled with inductive MILE encoders that act as sensors. The motors are controlled by servo controllers from maxon’s ESCON series.  “EC flat motors provide the best power-to-weight and power-to-volume ratio”, explained Elena García. “This is a variable of paramount importance, as gait exoskeletons require high power but a very low weight and volume.” The exoskeletons will be made available commercially once CE certification marks have been received.

For more information contact maxon motor Australia Tel. +61 2 9457 7477.

Inspired by nature. Created by engineering. Powered by maxon.

Empower Prosthetic Foot

Biology and engineering have been combined to create the world’s first prosthetic foot with propulsion powered from a maxon DC motor.

Our calf muscles provide the essential power, control and stability for walking. Those who’ve had below the knee amputation tire very quickly walking on a prosthetic foot. Step in Hugh Herr, Professor at MIT Boston who developed The Empower bionic prosthetic foot along with the Ottobock Group, a world-leading supplier of prostheses. Hugh himself is a double transtibial amputee resulting from a mountaineering accident. Hugh and his team drew inspiration from nature to create The Empower combining both biology and engineering together.

The Empower is a third generation newly developed bionic foot. A research team spent 16 months to make walking feel more natural by using a carbon spring which transfers energy directly to the foot. A powerful maxon DC motor refines the energy pulse delivered by the spring and provides the missing power of a calf muscle, step by step with each toe push-off. Several sensors “tell” the prostheses which phase of movement the foot is in, at any given time, so that it can perform the corresponding action. This allows for short sprints, which were previously deemed impossible, as well as walking on uneven ground and up inclines. What’s more, the greater the load on the prostheses, the greater its energy output becomes, just like a natural foot. The DC motor providing the propulsion is maxon’s EC-4pole 30. Selected for its powerhouse features and high output per unit of volume and weight it provides an ideal ratio between size, weight and power – a key factor in developing prosthetics.

For more information on prostheses and robot assisted rehabilitation please contact maxon motor Australia tel.+ 61 2 9457 7477.

A new prosthetic bionic hand.

world of prosthetics is engineers paradise- hand

Prosthetics are a significant engineering challenge because of their conflicting DC motor design goals: high torque, high speed, compact size and the DC motors need to be as energy efficient as possible.

German company Vincent Systems have created a bionic hand prosthesis that is the first commercially available prosthetic delivering haptic feedback about grip strength to its wearer. This is achieved with short pulses of vibration. If the hand were to vibrate evenly, a person becomes familiar to the sensation and eventually stops paying attention to it.

What sets this prostheses apart is that each finger can individually open up. This opens up numerous situations for the wearer such as being able to ride a bike, tie shoelaces, hold a raw egg or open a door. 12 grip patterns are available that can be activated via muscle contractions. Weighing about the same as a human hand it’s available in a version small enough for children, with the youngest wearer being eight years old.

Each individual finger is actively driven by a DC motor, and the thumb is driven by two DC motors. Maxon have up to six brushed DC motors in the hand: DCX 10 DC motors with modified GP 10A planetary gearheads. The drive systems were selected for their compact size and highest energy density currently available from maxon. Plus the drives needed to be durable and function faultlessly for approximately five years while being exposed to diverse and heavy strain every day.

It was important to CEO and founder of Vincent Systems, Stefan Schulz, that patients wouldn’t need their healthy hand to help. “A prosthetic hand should help its wearer and not demand the attention of the good hand.”

For further information please contact maxon motor Australia Tel. +61 2 9457 7477.

 

Shining a light on motor applications.

BLDC Brushless Flat DC motor sideview450px BLDC motor Brushless Flat DC motor450px

Brushless flat DC motor with hollow bore for air and light transmission.

Today we exhibit a new motor development featuring a Brushless DC (BLDC) flat motor. Flat motors are also commonly referred to as pancake motors. This unit has a body length of just 38mm and an output power of over 157W and 6000rpm at the shaft in the application. The average motor power rating for the series across 6 variants is 100W. The overall motor diameter is 68mm and it can be supplied with or without protective covers for IP rating. The motor is available with an internal encoder with resolutions up to 16,384qc per revolution making it suitable as a rotary stage of robotic joint actuator. The unique feature though is the motors hollow shaft. This is to enable customers to pass light or air through the bore of the motor. Air transmission is a common requirement for packaging and placement machinery and light or fibre is a common requirement for film and camera gimbal applications. This motor was also manufactured with the customers shaft length and bore specifications in combination with a custom rear shaft extension at the rear from the motor rotor.

Contact maxon motor Australia for motor specifications or assistance with a custom solution Tel. +61 2 9457 7477.

 

New maxon motor catalogue

maxon motor have released the 2018/19 catalogue. Entitled “High precision drives and systems” the new catalogue theme is based on maxon motors focus on building complete drive systems including DC motors, gearheads, sensors and controllers.
maxon motor will continue to be the world’s leading supplier of high precision brushed and brushless DC motors and gearheads but also have expanded into cross-platform system solutions from a single source. In addition to the new capabilities expansion maxon have released a large range of new products. These include: A new square format 16mm brushless DC motor, 13mm and 16mm ECX high speed brushless motors, the new ECi-30 low cost high torque BLDC motor, an entire range of frameless brushless motors that are particularly suitable for wheel hub applications and robotic joint actuation, new encoders and various new motor control units. The first torque levels from a direct drive maxon motor at 1Nm have been achieved with the new 260W flat motor that is less than 40mm long and a series of motors with a hollow bore are handy for applications that require a passage for cables, air or light. Print versions and online e-paper versions have been released.
For customised solutions contact maxon motor Australia Ph: +61 2 9457 7477.

Fresh, local, organic food delivered emission free.

Maxon BIKEDRIVE is lightweight & powerful and can be fitted to nearly any bicycle, instantly adding up to 50 Nm power and achieving speeds up to 45 km/h.
Delivering organic, seasonal, locally produced fresh food with zero carbon emissions around the hilly town of Lausanne in Switzerland is a thriving business for local company, Plateforme Bio Lokal. Owners Charles-Louis Mourruau and Hansjörg Haas transport boxes on their cargo bikes, with fresh produce weighing more than 100 kgs, working 12-14 hours per day and cycling up to 80km per day. And it’s possible because they use maxon’s BIKEDRIVE on their bikes. The BIKEDRIVEs DC motor, battery pack and powergrip is lightweight at 3.5kg and powerful delivering 50 Nm of torque and accelerating from 0 to 32 km/h in just 3 seconds. For Hansjörg Haas “The desire for sustainable food is increasing. At the same time the streets are clogged with cars. Therefore cargo bikes are the means of transportation of the future”. For more information on maxon’s BIKEDRIVE call maxon motor Australia +61 2 9457 7477 or visit www.maxonbikedrive.com

DC motors for the transportation industry.

maxon motor works closely with Hannover based, German manufacturer KAG motors. KAG produces heavy duty, innovative, reliable EC and DC motors for off-the-shelf or customisable drive system solutions to the transport sector. The industry is heavily legislated with regards to access rights for the general public. KAG DC motors can be found in automatic bus and train doors, sliding steps, access ramps, doors for WC facilities in trains, switchgear, sanding systems, mirror adjustment and auxiliary compressors. The designs are vandalism-proof, vibration-resistant, cogging-torque and noise optimised, and have a slim design where needed. For more information on DC motors for transport systems please contact maxon motor Australia tel. +61 2 9457 7477. Visit http://www.kag-hannover.com/en/ for more information on KAG DC motors.