Taking to the high skies with maxon motors

At an altitude of 11 kilometers above the surface of the earth, the air is very thin. Modern pressure cabins and an environmental control system (ECS) ensure a pleasant atmosphere in commercial aircraft. In the new Boeing 787, also known as the Dreamliner, a special air-conditioning system further improves the comfort of the passengers on long flights. Brushless maxon DC motors, spur gearheads and resolver combinations ensure a good climate at great heights.

Environmental control systems in aircraft encompass three components: air exchange, pressure control and temperature control. At altitudes up to and beyond 11,000 meters, providing the passengers with the required atmosphere in the cabin, with high enough air pressure, adequate oxygen supply and a satisfactory ambient temperature, means that each commercial aircraft needs a climate control system. Air-conditioning systems in aircraft therefore differ greatly from ordinary air-conditioning systems, both where the design and the energy source are concerned, as aircraft ACs require an energy source with much higher power capacity and have to meet higher safety requirements.

Pressurized cabins in commercial vehicles ensure that the air pressure is at a level that is tolerable for passengers. The circumference of the aircraft expands due to the pressure compensation. This puts great stress on the airframe. During the flight, the pressure in the cabin is successively reduced slightly as the altitude increases. Thus the passengers experience an amplitude increase to approx. 2400 meters. However, the climate control also depends on the amount of oxygen required by a human and the number of seats on the aircraft.

But oxygen alone does not ensure a pleasant atmosphere. The temperature and humidity also play an important role. Modern computer-controlled systems regulate the temperature with a precision of one degree. A considerable amount of heat is contributed by the passengers themselves. Each person radiates 80 to 100 W on average. On the ground, the air-conditioning unit is supplied with compressed air by the auxiliary power unit (APU) and during the flight, on most aircraft, by the jet engines.

Dreamliner increases comfort of long-distance flights

Last year, aircraft manufacturer Boeing launched a new long-distance aircraft: the Boeing 787, also called the Dreamliner. Unlike any other aircraft before it, the Dreamliner fuselage consists largely of carbon fibre. This aircraft offers an improved cabin atmosphere and different pressure conditions. This makes long-distance flights more tolerable for the passengers.

According to Boeing, the new innovative plastic body of the aircraft is stronger than a thin aluminum shell. The cabin pressure corresponds to a height of 1800 m. This is deemed to be more passenger-friendly than the customary 2400 m. Furthermore, the corrosion-resistant shell allows 15 percent air humidity in the interior, instead of the customary 4 percent. Therefore the climate system also works a little bit differently.

On the Boeing 787, the air is not drawn from the jet engines under pressure, but is instead, fresh air from the outside atmosphere. On board electric motors power compressors to prepare the cabin air for a comfortable flight experience. In other words, the air-conditioning system is operated entirely electrically. The jet engines have very strong generators to ensure adequate power supply. The climate system for the Dreamliner is manufactured by the American AC manufacturer Hamilton Sundstrand. Such a system supplies enough power to cool or warm 25 private households.

maxon motors for a perfect climate

Motors for aeronautic and astronautic applications differ greatly from standard motors. They have to withstand greater temperatures and vibrations, have a longer life span and have to be very reliable. All in all, 48 motors by maxon are at work in the climate control system of each Boeing 787. Specific motor modifications were required for the highly complex air-conditioning system. This includes drives for the cabin ventilation, for cooling the electronics and for closing and opening the air inlet on the outside of the aircraft. The motors have to withstand temperatures of -55 C to +85 C and the vibrations during take-off and landing – throughout the decades of the aircraft’s service life. Therefore it is vital that the motors have a long life span. The cabin ventilation system consists of 36 shut-off valves that are driven by maxon EC 45 flat motors. These light brushless motors have been designed to fit into even the smallest spaces.

The EC flat motors achieve speeds of up to 20,000 rpm and, thanks to their open design, offer excellent heat dissipation at high torques. In the case of the climate control system of Hamilton Sundstrand, the mo-tors achieve a speed of 4,000 rpm. In particular the stator of the flat motors installed in the air-conditioning system has been adapted; the printed circuit board has been modified with low-temperature Hall sensors and the motor has been given a special protective conformal coating. A modified stator magnetic path prevents movement when the motor is unpowered further improving overall efficiency. The linear drives for the air inlets use modified EC32 motors which have also been equipped with low-temperature Hall sensors. Furthermore there is a flame barrier at the output shaft of the motor, a special vibration-resistant fastening screw threads and cogging detent-brake modules.

www.maxonmotor.com.au

The Dark energy of the universe

The HETDEX project is the first major attempt to find “dark energy” in the universe. With special spectrographs, the three-dimensional positions of one million galaxies are recorded. In the summer of 2012, the Hobby-Eberly Telescope will start scanning the universe – aided by maxon motors every step of the way.

The Hobby-Eberly Telescope (HET) is located at the McDonald Observatory in West Texas. Its spherical primary mirror consists of 91 identical hexagonal segments, each one meter in size. Together, these individual mirror segments form a mirror with a diameter of almost 11 m, which makes it the largest in the world. The effective aperture of the primary mirror currently amounts to 9.2 m at an opening angle of four arc minutes*. With its 11.1 m by 9.8 m, the HET is the fourth-largest optical telescope in the world. Furthermore, thanks to its innovative design, it was produced very cost-effectively: It only cost 13.5 million dollars – approx. a quarter of the cost of a comparably large telescope. These savings were made possible partly by simplifying the design and by using commercially available components.

The spectroscopic telescope for observation of the skies is mounted on a so-called Prime Focus Instrument Package (PFIP). It is equipped with two spectrographs with medium and high resolution. Even more savings have been achieved by forfeiting moving the 85-ton telescope around the second axis. That means that the mirror always looks at a position 55 degrees above the horizon, but simultaneously can be swiveled horizontally full circle. This makes it possible to observe 70 percent of the skies. The light gathered by the primary mirror is bundled above the primary mirror, where it is received by a special auxiliary lens and transmitted to the spectrographs via optical fiber. This auxiliary lens is mounted in the so-called “tracker” (see figure 3), which offers movement in 6 axes. The mirror thus does not follow the object; instead the object moves over the circle.

Currently, the wide field components of the HET are being upgraded to increase the angle of view to 22 arc minutes and the usable aperture to 10 meters. In future research projects, these upgrades will make it possible to gather the highest possible light quantity by means of a glass fiber coupling and thus revolutionize spectroscopic observations. Scientists want to use the new, upgraded HET to obtain a better understanding of so-called “dark energy”. According to the current hypotheses, almost three quarters of matter and energy in the universe consists of “dark energy”, and it is considered to be a mysterious force that causes the universe to drift apart at an increasing speed as it gets older.

HETDEX looks at the universe

The HETDEX project (Hobby-Eberly Telescope Dark Energy Experiment) was initiated to solve this mystery. From 2012 to 2015, the section of the sky containing the Big Dipper constellation will be scanned intensively with the HET. The research project aims to map 1 million galaxies that are 10 to 11 billion light years from earth – down to the smallest detail. The project is the result of the cooperation between the University of Texas (Austin), the Pennsylvania State University, the Texas A&M University, the University Observatory Munich, the Leibniz Institute for Astrophysics in Potsdam and the Max Planck Institute for Extraterrestrial Physics.

International scientists want to know more about the processes that occur in the universe. The purpose of the large-scale research project is to verify whether the current laws of gravity are correct. Another aim is to discover new astronomic details about the Big Bang. At the observatory on Mount Fowlkes in Texas, the light in the HETDEX camera is not captured by a photo chip, but instead by 33,400 glass fibers. The experts hope that, instead of dark matter, other hitherto unknown gravity effects are causing our cosmos to expand. The first evidence for one of the theses about dark matter – or an answer that conclusively proves a certain phenomenon to be non-existent – is expected for 2016 at the earliest.

Design of the PFIP

The Prime Focus Instrument Package is is positioned on a tracking device at the top of the telescope and is equipped with a wide field corrector, a capturing camera, measuring devices and a focal plane system. The PFIP is a a standalone automation unit with 12 subsystems and 24 movement axes. Motion controllers and modular I/O systems are connected using the CANopen messaging protocol. All communication between the ground-level systems and the PFIP subsystems are conducted either point-to-point via Ethernet, or through Ethernet/CAN gateways that pass CANopen messages transparently.

The PFIP has 24 motion axes, 15 of which are motorized. The movements have to be executed smoothly and with high precision at various speeds, in particular at extremely slow speeds. The motion controller has to be able to perform several operations in different situations, for example accurately following a velocity curve (aperture control), moving to and holding an absolute position, or following a multi-axial position and velocity curve.

The drives used in the PFIP subsystems are maxon motors of the brushless EC series, which can be equipped with gearheads, magnetic incremental encoders, and electrically operated brakes as required. Smooth motion at low speeds is achieved by means of sinusoidal commutation. Therefore, in addition to the standard Hall sensors installed in the brushless maxon motors, an optional incremental encoder is used. Incremental encoders provide additional position data to the motion controller.

Accurate maxon positioning control units

All controllers are maxon positioning control units of type EPOS2 50/5. In addition to the closed-loop control circuits for current, velocity and position, the controllers have an interpolated motion mode that enables them to follow a programmed multi-axis trajectory. Furthermore, the EPOS2 is equipped with analog and digital input and output devices that can be accessed via the CANopen interface. It is also possible to program reactions to digital input signals, such as positive/negative limit values, home position, quick stop and drive activation/deactivation. In the PFIP application, the modular I/O stations have CANopen bus couplers,which make it possible to communicate with all additional I/O devices directly via the CAN bus or via an Ethernet-based CAN gateway. The gateway uses a simple ASCII protocol for configuration and for sending messages in both directions.

In this application, hardware devices are connected to the CAN bus and are controlled by the PFIP computer (PCC) in a master/slave configuration. In the event of multi-axis motion, the PCC would for example configure several motion controllers for the desired motion and trigger them simultaneously by means of a single CANopen command. The PFIP motion controller generally uses a 24 V DC supply. For higher inertial loads, such as the shutter, a 48 V supply can be used and is compatible to the EPOS2 50/5 controllers. Compliance with the specifications for PFIP and HET requires that all hardware components also function at temperatures of -10°C or below. maxon motor offers a wide range of products that meet these temperature requirements and provide the quality, reliability and ruggedness required for industrial automation systems.

All in all, the architecture of the HET is very flexible. By adding or removing motion controllers, I/O modules or voltage supplies, significant changes can be made very easily. The components are small and light enough to allow space in the initial design for later add-ons and supplements.

 

www.maxonmotor.com.au

 

Humanoid Robot Fights Fires on Ships

Agility, speed, strength, and balance are all qualities needed to fight fires, especially when those fires are shipboard. Such feats are difficult for humans, let alone humanoid robots. But that’s just what the RoMeLa labs at Virginia Tech are working on.

“The SAFFiR [Shipboard Autonomous Firefighting Robot] will be able to carry and operate fire extinguishers, fire hoses, throw PEAT [propelled extinguishing agent technology] canisters, as well as interact with humans and find fires. We’ve already built the legs of the robot and are working on the rest of it,” said Derek Lahr, a PhD candidate and project manager.

The SAFFiR’s legs are a highly compact amalgamation of motors, pulleys, wire harnesses, and controllers that allow the robot not only to walk, but also to walk while on a ship as it pitches and rolls through waves. Key concerns while designing the SAFFiR included the need to control the robot’s locomotion from both a purely mechanical stance and a balance standpoint. For example, if the ship pitches forward, the robot might need to speed its leg movement and produce a longer stride length to keep itself from getting off balance.

Lahr said that by using maxon  motors’ EPOS controls, the project engineers were able to interconnect all operations easily. “For six degrees of freedom in each leg, we use six motors. That’s 12 motors being used in just the legs section of the SAFFiR.” Both speed and torque were necessary, since at different parts of a stride, the leg will alternately move fast and free and then slow and more controlled.

Lahr and his team used multiple 30mm maxon motors for the legs. Wherever possible, they designed in 100W motors to help reduce the weight of the unit. The motors provide the largest amount of mass in the robot, so any reduction in weight was a plus. “Maxon motors actually provide the highest power to weight ratio we could find in a brushless motor anywhere,” Lahr said. “And humanoid robots can be more sensitive to weight than an airplane.”

For certain critical joints like those in the knees, 200W motors were used. The knees of the robot, just like human knees, take the brunt of the load, especially when squatting or kneeling. They also have to move the fastest while walking. Those joints needed the additional torque and speed combination available with the larger wattage units.

At this point in the design testing phase, the robot is tethered much of the time, but the engineers have tested and confirmed the use of a pair of 10 amp/hour lithium polymer batteries (about the size of a small brick) will be able to power the robot for at least a half-hour with a 20A average current draw. This includes all the motors, sensors, and controls.

Because the robot operates off a closed-loop system and uses 12 motors just in the legs (there will be another 12 in the arms and hands, as well as two in the neck), Lahr and his team needed controllers that could handle the load. “We chose maxon’s EPOS 50/5 controllers for the joints, aside from two EPOS 24/5 controllers used for less demanding degrees of freedom,” he said.

One of the main reasons the team chose to use the EPOS (Easy Positioning System) series controllers was that they came equipped to use the CANopen bus system. “Several of us were familiar with CANopen from other applications, so we were attracted by the familiar operating and programming needs of the system software from the beginning,” Lahr said. This makes the EPOS embedded controllers well suited for multi-axis distributed controls that also feature electronic gearing, PVT, step and direction, and point-to-point positioning.

The EPOS controls are used in two different modes — position control mode and force control mode. Position control allows for higher-level controllers to read position data from the sensors and closely regulate the specific position of the leg, so that corrections can be incorporated while walking. Force control mode is the latest thing in locomotion, according to Lahr. “It combines current control circuitry with load cell feedback to create a ‘pure force’ actuator, which allows the leg to swing freely,” he said. “The EPOS controllers allow us to switch modes on-the-fly.”

This is important so that the leg impact doesn’t harm any of the actuators. “We can switch from position control to force control at the last millisecond, so that we can accurately control stride length and impact power,” he said. An additional benefit of using the maxon controllers is that they come with EPOS Studio (a GUI-based free software package provided by maxon), which provides a simple utility to program the controllers and helps the user to bug-check software before implementing it into the CANopen system.

In general, EPOS controllers have been designed using advanced 32-bit DSP technology, which provides users like Lahr and his team the extended functionality of a miniature embedded controller. The units were specifically developed to meet demanding size and performance requirements often found in robotic, medical, and semiconductor applications.

www.maxonmotor.com.au

Humanoid Robot powered by maxon DC motor

maxon DC servo motors at work.

Rib Spreading Tool Gets Robotic Update

It may sound unbelievable, but some tools that physicians use to perform invasive surgery were originally developed in the 1930s and have gone through minimal updating since. Most often, these tools have been efficient enough to do the job, even if patients took a long time to heal. This is especially true when a surgeon has to enter the chest cavity for heart or lung operations. To date, there are two primary methods used to open a space large enough for a doctor to work inside the chest: a thoracotomy or a sternotomy.

The thoracotomy is where an incision is made between two ribs to gain access. For a sternotomy, the surgeon saws through the sternum and then spreads it apart. In both cases, the surgeon pries apart the ribs or sternum using a hand-cranked, stepping mechanical jack called a thoracic retractor. Large forces are needed to spread the ribs. In fact, the Physcient team discovered that the forces necessary to separate the ribs are roughly equal to the weight of the person being operated on, which means that using a thoracic retractor can result in broken bones, crushed nerves, wrenched joints, and torn ligaments. All of these factors offer adverse post-surgical effects that can be ongoing.

Physcient has developed technologies that are expected to greatly reduce the damage of thoracic retraction. “Two of the concerns we ran into,” said Chuck Pell, cofounder (with Hugh Crenshaw) of Physcient, “were that we had to maintain the same footprint as other thoracic retractors being used in the operating room today, plus we had to be able to sterilize the tool repeatedly, to be used for literally hundreds of cycles.” The company’s Assuage Smart Retractor was designed to apply technology to solve a longstanding problem without changing surgeons’ procedures.

According to Pell: “We both (he and Crenshaw) studied biomechanics, and it is that understanding of how creatures move that we use to translate into technology. We recently turned that knowledge to surgical tools, and are finding it very interesting. Many of the tools used in surgery today were invented prior to biomechanics becoming a mature science.”

According to the National Heart, Lung, and Blood Institute, more than half a million heart surgeries are performed every year. Add to that number another hundred thousand lung surgeries, and the need for better tools quickly becomes apparent. Because of the antiquated design of thoracic retractors being used today and the number of surgeries being performed, the incidents of rib fractures has continued to increase.

Crenshaw and Pell recognized that there had been little research pertaining to the forces generated by rib spreaders in the past, and brought together a team to measure the effects and produce the technology to greatly reduce damage. Bones can flex quite a bit before breaking, often due to the rate at which the spreader moves — a sudden bend like that delivered by a hand-cranked thoracic retractor can cause a rib to snap. Bone fibers need a little time to adjust.

By placing sensors in the Assuage rib spreader, it’s easier to detect whether fibers begin to break down. This information is then fed back into the tool so that it responds instantly to tissue events. This closed-loop feedback to the motor must have a high degree of precision and be completely reliable to be used inside medical devices.

Physcient designed a prototype rib spreader around a motor manufactured by Maxon. One of the more important specifications for the motor was the lack of cogging that often occurs at very low speeds. The rib spreader has to be able to move smoothly without jerking motions that can cause undue damage to the patient. DC brushless motors easily operate from a battery, and an onboard controller and sensor system helps to maintain a controlled spreading process. In order to handle the high forces necessary, Physcient selected high-torque motors.

“The motors we use from Maxon not only have to handle the greatest retraction forces ever measured in the medical industry, they also have to be precise in order to reduce damage to ligaments and soft tissues,” Pell said.

Maxon manufactures a complete line of motors from 6mm to 90mm for a wide variety of applications. They are electronically commutated for minimal electrical noise. The company’s DC brushless motors have no mechanical brushes to wear out, which allows them to provide long motor life. By being designed using high-grade, preloaded ball bearings, an additional benefit in longevity is added to the motor. Maxon motors provide a low-profile design ideal for applications requiring a small footprint.

The Physcient Assuage Smart Retractor takes into consideration the physics of bone and tissue. As with most cardiothoracic research, tests were run on pigs, which are biomechanically similar to humans. The Physcient team built a prototype that used two rows of curved metal fingers, meant to cradle a single rib. As the retractor automatically spreads the ribs, sensors provide feedback to the Maxon motor, providing smooth opening. In the experiments, Physcient’s retractor greatly reduced tissue trauma, reduced pain, improved breathing, and resulted in better overall recovery.

Once the team at Physcient produces the Assuage rib spreader, it plans to look into other medical equipment that hasn’t changed over many years. Its aim has always been patient-oriented through offering the right tools for the surgeons, and it plans to automate and upgrade the entire surgical toolkit. Physcient plans to bring Assuage Smart Retractor to market in 2013.

Modular Axis Servo Controller.

Would you like your position controller with 1, 5 or 11 axis?

Now available from maxon motor ag is the completely innovative modular system position controller that is available globally in any number of axis up to 11. The unique system allows either the user or supplier to simply snap off an axis. The 11 axis motherboard features a unique perforated or breakout design that is both robust enough for OEM integration but also features a cut point for separation down to smaller drive number configuration.  So if maxon have a request for a 4 axis control unit they simply take the 11 axis controller and divide it into a 7 axis and 4 axis. The 4 axis unit is sent to a customer and the leftover 7 are put on the shelf for the next application for 7 or less axis.

To drastically reduce cabling requirements for power and communications the controller system features and internal CAN bus system that simply jumps the segments of the motherboard allowing a single connection at the start of the motherboard that can be easily separated at any point. Every segment features a BUS termination resistor that can be selected if it is the last node on the CAN line. Power is also carried down the motherboard system and across the breakout points by jumpers.

Each unit is supplied with a powerful software configuration suite that features a user friendly graphical interface for drive configuration and auto tuning of the motion control card with your selected motor. With this interface you can see all axis in your machine and freely adjust the parameters of each. The motherboard features a USB and RS232 gateway for easy connection and setup and is supplied with leads and optional longer pre-configured cables.

www.maxonmotor.com.au

Multi Axis Motherboard

maxon DC Servo motors fly into outer space on board the “Dragon” spacecraft

The flawless launch of the SpaceX Falcon 9 rocket on May 22, 2012 is another successful step for maxon motor ag in the use of high precision motors in the astronautics industry. The crucial tasks of the maxon motors in the SpaceX mission included orienting the solar arrays of the Dragon spacecraft towards the sun to provide the power supply.
The first private cargo capsule in the history of space travel was launched into space on May 22, 2012 from the Cape Canaveral Air Force Station in Florida.The voyage of the unmanned “Dragon“ spacecraft, developed by the Californian company SpaceX, was a historical event for all involved. Never before has a private company developed a combined spacecraft and launch system that is capable of undertaking an orbital rendevous and then returning to earth.

Brushless maxon motors for mission-critical tasks EC maxon motors  were used on the voyage to the ISS to rotate the solar arrays to keep them aligned with the sun as Dragon orbited the earth, open the instrument bay door  which contains navigation equipment, and lock in place the fixture that allows Dragon to be grappled by the space station’s robotic arm.
On May 25, 2012, astronaut Donald Pettit successfully used the 17.6 metre robotic arm of the ISS to grapple the Dragon and guide it to the docking point on the space station. The 4.4 metre tall Dragon spacecraft supplied 520kg (1146 pounds) of scientific equipment and food to the ISS. On May 31, the six ton capsule detached from the ISS and splashed down under parachutes in the Pacific Ocean off the coast of California on the same day. The capsule was returning 660 kg (1455 pounds) of material from the ISS. Now that NASA has phased out its space
shuttle program, the Dragon is the only means of transporting such large quantities of material back to earth. The maxon team has been working on the SpaceX motor project for the last year. This is a milestone in the history of maxon, and the story isn’t over yet, as NASA has contracted with SpaceX for another twelve flights to the ISS. In a few years, the spacecraft will carry seven astronauts to the international space station.

For maxon motor, this latest flight is a major step forwards in the future of commercial aerospace applications.
With the Mars rovers Opportunity and Spirit, maxon motor has previously demonstrated that maxon motors function flawlessly, even in outer space and on other planets. “We recognized the significance of what SpaceX were trying to achieve when they first approached us for motors several years ago. Our participation demonstrates that our standard industrial motors now have the technological sophistication that enables them to function in the critical roles needed for the success of this ground breaking mission,” explained Robin Phillips and Kornelia Stubicar, the two managers of the SpaceX motor project at maxon who, together with their team, implemented the development of the Dragon motors.

www.maxonmotor.com.au

DC Servo motors in outter space

Intelligent Robots for Reserch and soccer

The robot named DARwIn-OP (Dynamic Anthropomorphic Robot with Intelligence-Open Platform) is used mainly for research and education purposes. The user can easily program the robot according to his own wishes, as the system is based on open source. The very quick and precise movements of the robot are executed by maxon motors.
The robot is approx. 45 cm high, is equipped with sophisticated sensors and is able to perform dynamic movements. For example, it can walk very fast (24 cm/s and more), it can speak and listen, run processes, can balance itself and works fully autonomously. One of its biggest hobbies is playing soccer. In June 2012, Team Darwin conquered 24 international teams and won the RoboCup in Mexico City.
The special feature of the humanoid robot is its open, modular structure that makes changes very easy. DARwIn-OP is a completely open platform; both the hardware and the software can be customized in any way desired and various software implementations are possible (C ++, Python, LabVIEW, MATLAB, etc.). Furthermore, all CAD data for the robot components and instructions for manufacturing and assembly are available online, free of charge. A computer has been built into the humanoid robot; like a normal PC, it is equipped with all customary ports such as Ethernet, USB and HDMI. Thanks to the USB camera integrated in its head, it can locate objects and thus also detect the ball during a game of soccer

.
DARwIn-OP was developed by the “Robotics and Mechanisms Laboratory” of Virginia Tech (RoMeLa), with the support of the National Science Foundation (NSF) and in cooperation with the University of Pennsylvania, Purdue University and the South Korean company ROBOTIS. The mini robot is based on the award-winning Darwin series which is being developed ever since 2004. ROBOTIS is to thank for the very high mobility of the robot.

The company manufacturers the so-called Dynamixel actuators, which are used by numerous universities and research centers all around the world in the development of their own robots. Dynamixel actuators are smart actuators with fully integrated DC motors and are produced exclusively for robots. They are characterized by high precision, top quality and a wide functionality range. These all-in-one drive modules with built-in controllers are equipped with numerous feedback functions (position detection, velocity, input voltage, internal temperature) that are controlled via a network. The Dynamixel actuators are programmed by means of RoboPlus, the free graphic programming software of ROBOTIS. DARwIn-OP is a very good example of how intelligent a robot can act with the aid of the actuators.
The drive modules are used in the production of robotic arms, mobile robots as well as humanoid robots. Each Dynamixel unit is equipped with a maxon RE-max motor. The implemented RE-max motors achieve a high performance of 0.75 to 22 W, thanks to their neodymium magnets. Three different versions of the maxon motors are used in the small robot. One of these is the RE-max24, which has been specially modified for this application by adapting the drive pinion. A total of 20 Dynamixel MX-28T units can be found in the DARwIn-OP robot — twelve for the arms, six for the legs and two for the movements of the neck. Robotis chose maxon motors because, although they are small and light-weight, they are very powerful and simultaneously very robust with a long service life.

Well-balanced robots
The robot is supplied with power by means of a rechargeable battery. The DARwIn-OP weighs 2.9 kg and can go through its wide range of motions for 30 minutes on a single battery charge. It can even stand on its head. Three gyro sensors (balance sensor module) make sure that it does not lose its balance.

www.maxonmotor.com.au

Powered by DC Servo motors

Right Angle Spiroid® Gear

Maxon precision motors is pleased to announce the newest addition to our family of motion control products, the 22mm and 32mm right angle gearheads. These compact, lightweight and high torque gearheads were developed to provide an adjustable 360 degree right angle output

for the most demanding applications. The Spiroid® technology incorporated in the gearhead design offers a number of performance benefits:

  • Extremely high torque transmission
  • High stiffness / Low deflection with large applied loads
  • Back-drivable (4:1 ratio) & Non-back drivable (31:1 ratio) versions
  • Absolute output shaft position achievable with encoder mounting option
  • Compact size
  • Output shaft can be orientated 360 degrees at any time
  • Low backlash
  • Up to 3:1 contact ratio
  • Quiet operation

The 22mm and 32mm right angle gearheads are available in either a 4:1 or 31:1 ratio, which may be mounted directly onto many of maxon’s brushed/brushless motors OR stacked on different ratios of maxon’s GP22 and GP32 planetary gearheads. This results in a wide range of achievable gear reductions. The motor and gearhead combinations are ideally suited for a variety of applications particularly where an output shaft perpendicular to the motor axis is desired.

Contact www.maxonmotor.com.au

In the next 9 months, Switzerland’s first tendon-controlled humanoid robot will be created.

maxon drives help “Roboy” stand on its own legs.

 A project team with experts from science and industry, including the drive specialist maxon motor, is developing a new humanoid robot: “Roboy”. On March 9, 2013, “Roboy” will be presented to the public at the “Robots on Tour” international robotics fair that will take place in Zurich as part of the 25th anniversary of the Artificial Intelligence Laboratory (AI Lab) of the University of Zurich. This development can now be followed and supported.

Since June 2012, the project team has been busy implementing the latest knowledge in the field of robotics to create a new humanoid robot. “Roboy” will be 1.30 m high, with an anatomy and motion characteristics that mimic that of humans. With “Roboy”, the project team wants to show what topics are being researched in the field of robotics and which technologies are ready for series production. “Roboy” is a further development of the technology used in the famous “ECCE Robot”. Both robots, “ECCE Robot” and “Roboy”, are equipped with tendon-controlled drive technology, which gives the robots the ability to perform humanoid movements and to react to their environment. “Because robots physically move within their environment, completely new types of interaction between humans and machines result, far beyond what is possible with customary information technology such as laptops or smartphones,” says Prof. Rolf Pfeifer, initiator of the ambitious project. “The development of “Roboy” can be shaped and supported by everybody,” he adds. To make “Roboy” a reality by March 2013, the researchers need the support of partners and robotics fans. At www.roboy.org, everybody can take part.

Swiss robotics and drive expertise

In addition to the scientists of the AI Lab, international research groups from Germany and Japan are participating in the project. Furthermore it has the support of partner companies that are providing cutting-edge Swiss high-tech expertise. As main project partner, maxon motor is supplying numerous DC and EC motors, as well as sensors that enable “Roboy” to make high-precision movements. The drive specialist from Sachseln has many years of experience in robotics, e.g. for medical technology, industrial automation or the astronautics industry. Currently maxon products are in use in the two Mars rovers “Curiosity” and “Opportunity”. “High-precision electric motors are the artificial muscles of a robot. Our drives are small, dynamic and efficient – just what robotics need,” says Eugen Elmiger, CEO of maxon motor. Drive systems from Obwalden already powered the movements of the “ECCE Robot”. “For us, creative and ambitious projects such as “Roboy” are always an incentive to challenge ourselves and to try new things,” elaborates Eugen Elmiger.

The know-how generated as part of the “Roboy” project is freely available to researchers, robotics fans and people who are interested in technology. “With “Roboy”, we are defining a new development platform for humanoid robots that can and should be used and further developed by everybody!” explains Rolf Pfeifer.

For more info www.maxonmotor.com.au

 

Roboy

The new maxon Catalogue 2012/13 has arrived.

2012, maxon motor presents new motors, gearheads, servo controllers, digital positioning controllers and integrated MILE encoders.

The new catalogue of the specialist for high-precision drives and systems is now available: maxon motor has been investing in the constant development of innovative products for many years. And this year is no different – there is an abundance of new products. The 390 pages of the maxon Catalogue 2012/13 are packed with technical data of motors, gearheads and sensors. Additionally the catalog includes all details on intelligent control electronics for DC and EC drives.

The maxon Catalogue 2012/13, with its approx. 3100 products, represents the entire product program of the Swiss manufacturer of precision drive systems. On 390 pages, more than 1720 brushed and brushless DC motors, 993 gearheads, 199 spindle drives, 65 sensors, diverse drive electronics and much more are presented. On a broad scale, many innovations expand the maxon product range: For example, the new GP 22 HD planetary gearhead complements the robust EC 22 HD (Heavy Duty) standard motor perfectly – this “power couple” is suitable for all extreme usage conditions – from thousands of meters under the earth to outer space. Some of the other innovations include new flat motors such as the EC 45 flat (Ø 45 mm, 70 W) and EC 60 flat (Ø 60 mm 100 W), flat motors with integrated MILE encoders, the GP 26 A (Ø 26 mm, 0.75-4.5 Nm) and GP 16 C (Ø 16 mm, 0.2-0.6 Nm) planetary gearheads, the GP 16 S (Ø 16 mm) spindle drive, the ESCON 36/2 and ESCON 50/5 servo amplifiers and the new programmable EPOS3 EtherCAT digital positioning controller.

On the DVD provided with the catalogue, the reader can browse through the maxon Catalogue and save or print data sheets. Additionally, all dimensional drawings are available in DXF and STEP format and can thus be imported into any CAD system. The DVD also contains the maxon selection program (msp), which helps the user to quickly and easily select the optimal drive solution from the vast range of possible combinations. To enable easier assessment, visual representations of the variants and alternatives are shown. Additionally, the “Selection Guide” has been supplemented: Now the user can immediately see which accessories are still required for connecting the selected motor with the recommended electronics. The msp is the ideal tool for interested customers who want to identify and solve a drive problem by themselves.

View the online version www.maxonmotor.com.au